When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The steady-state heat equation for a volume that contains a heat source (the inhomogeneous case), is the Poisson's equation: − k ∇ 2 u = q {\displaystyle -k\nabla ^{2}u=q} where u is the temperature , k is the thermal conductivity and q is the rate of heat generation per unit volume.

  3. Steady state (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Steady_state_(chemistry)

    The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.

  4. Finite volume method for one-dimensional steady state ...

    en.wikipedia.org/wiki/Finite_volume_method_for...

    These equations can be different in nature, e.g. elliptic, parabolic, or hyperbolic. The first well-documented use of this method was by Evans and Harlow (1957) at Los Alamos. The general equation for steady diffusion can easily be derived from the general transport equation for property Φ by deleting transient and convective terms. [1]

  5. Finite volume method for two dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    We obtain the distribution of the property i.e. a given two dimensional situation by writing discretized equations of the form of equation (3) at each grid node of the subdivided domain. At the boundaries where the temperature or fluxes are known the discretized equation are modified to incorporate the boundary conditions.

  6. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    An important example is the case where φ is at a steady state, i.e. the concentration does not change by time, so that the left part of the above equation is identically zero. In one dimension with constant D, the solution for the concentration will be a linear change of concentrations along x. In two or more dimensions we obtain

  7. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  8. Steady state - Wikipedia

    en.wikipedia.org/wiki/Steady_state

    Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics. Periodic steady-state solution is also a prerequisite for small signal dynamic modeling. Steady-state analysis is therefore an indispensable component of the design process.

  9. Continuous stirred-tank reactor - Wikipedia

    en.wikipedia.org/wiki/Continuous_stirred-tank...

    If the system is considered to be in unsteady-state, a differential equation or a system of coupled differential equations must be solved. Deviations of the CSTR behavior can be considered by the dispersion model. CSTRs are known to be one of the systems which exhibit complex behavior such as steady-state multiplicity, limit cycles, and chaos.