Search results
Results From The WOW.Com Content Network
In chemistry, an amphiphile (from Greek αμφις (amphis) 'both' and φιλíα 'love, friendship'), or amphipath, is a chemical compound possessing both hydrophilic (water-loving, polar) and lipophilic (fat-loving, nonpolar) properties. [1] Such a compound is called amphiphilic or amphipathic.
Amphipols (a portmanteau of amphiphilic polymers) are a class of amphiphilic polymers designed to keep membrane proteins soluble in water without the need for detergents, which are traditionally used to this end but tend to be denaturing. [1]
A typical amphiphilic flexible surfactant can form aggregates through a self-assembly process that results of specific interactions between the molecules of the amphiphilic mesogen and those of the non-mesogenic solvent. In aqueous media, the driving force of the aggregation is the "hydrophobic effect". The aggregates formed by amphiphilic ...
Peptide amphiphiles were developed in the 1990s. They were first described by the group of Matthew Tirrell in 1995. [5] [6] These first reported PA molecules were composed of two domains: one of lipophilic character and another of hydrophilic properties, which allowed self-assembly into sphere-like supramolecular structures as a result of the association of the lipophilic domains away from the ...
Micelle (polymers) Organized auto-assembly formed in a liquid and composed of amphiphilic macromolecules, in general amphiphilic di- or tri-block copolymers made of solvophilic and solvophobic blocks. Note 1: An amphiphilic behavior can be observed for water and an organic solvent or between two organic solvents. Note 2
Because of their amphiphilic structures, the polymers have surfactant properties that make them useful in industrial applications. Among other things, they can be used to increase the water solubility of hydrophobic, oily substances or otherwise increase the miscibility of two substances with different hydrophobicities.
For crystalline or semicrystalline polymers, anisotropy plays a large role in the mechanical properties of the polymer. [7] The crystallinity of the polymer can be measured through differential scanning calorimetry. [8] For amorphous and semicrystalline polymers, as stress is applied, the polymer chains are able to disentangle and align.
While having many of the properties of natural liposomes, polymersomes exhibit increased stability and reduced permeability. Furthermore, the use of synthetic polymers enables designers to manipulate the characteristics of the membrane and thus control permeability, release rates, stability and other properties of the polymersome.