Search results
Results From The WOW.Com Content Network
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln(x) is the inverse of the exponential function e x means that one has = () = for every b > 0.
One way is to set the derivative of the exponential function a x equal to a x, and solve for a. The other way is to set the derivative of the base a logarithm to 1/x and solve for a. In each case, one arrives at a convenient choice of base for doing calculus. It turns out that these two solutions for a are actually the same: the number e.
Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.
Similar asymptotic analysis is possible for exponential generating functions; with an exponential generating function, it is a n / n! that grows according to these asymptotic formulae. Generally, if the generating function of one sequence minus the generating function of a second sequence has a radius of convergence that is larger than ...
With β = 1, the usual exponential function is recovered. With a stretching exponent β between 0 and 1, the graph of log f versus t is characteristically stretched, hence the name of the function. The compressed exponential function (with β > 1) has less practical importance, with the notable exception of β = 2, which gives the normal ...
For many natural P-complete graph problems, where the graph is expressed in a natural representation such as an adjacency matrix, solving the same problem on a succinct circuit representation is EXPTIME-complete, because the input is exponentially smaller; but this requires nontrivial proof, since succinct circuits can only describe a subclass ...
It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n×n matrix given by the power series = =!