When.com Web Search

  1. Ad

    related to: differential calculator dy graph example word

Search results

  1. Results From The WOW.Com Content Network
  2. Leibniz's notation - Wikipedia

    en.wikipedia.org/wiki/Leibniz's_notation

    Gottfried Wilhelm von Leibniz (1646–1716), German philosopher, mathematician, and namesake of this widely used mathematical notation in calculus.. In calculus, Leibniz's notation, named in honor of the 17th-century German philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols dx and dy to represent infinitely small (or infinitesimal) increments of x and y, respectively ...

  3. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The graph of a function, drawn in black, and a tangent line to that function, drawn in red. ... differential calculus is a subfield of calculus that studies the rates ...

  4. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  5. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    For example, it might happen that f is constrained to a curve = (). In this case, we are actually interested in the behavior of the composite function f ( x , y ( x ) ) {\displaystyle f(x,y(x))} . The partial derivative of f with respect to x does not give the true rate of change of f with respect to changing x because changing x necessarily ...

  6. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  7. Phase plane - Wikipedia

    en.wikipedia.org/wiki/Phase_plane

    The solutions to the differential equation are a family of functions. Graphically, this can be plotted in the phase plane like a two-dimensional vector field. Vectors representing the derivatives of the points with respect to a parameter (say time t), that is (dx/dt, dy/dt), at representative points are drawn.

  8. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    The differential was first introduced via an intuitive or heuristic definition by Isaac Newton and furthered by Gottfried Leibniz, who thought of the differential dy as an infinitely small (or infinitesimal) change in the value y of the function, corresponding to an infinitely small change dx in the function's argument x.

  9. Differential (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Differential_(mathematics)

    The term differential is used nonrigorously in calculus to refer to an infinitesimal ("infinitely small") change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x. The idea of an ...