Search results
Results From The WOW.Com Content Network
Fourier transform infrared spectroscopy (FTIR) [1] is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range.
Without the slit used in dispersive spectroscopy, FTIR allows more light to enter the spectrometer and gives a higher signal-to-noise ratio, i.e. a less-disturbed signal. [8] The IR laser used has a known wavelength and the velocity of the movable mirror can be controlled accordingly.
An infrared detector is a detector that reacts to infrared (IR) radiation. The two main types of detectors are thermal and photonic (photodetectors). The thermal effects of the incident IR radiation can be followed through many temperature dependent phenomena. [2] Bolometers and microbolometers are based on changes in resistance.
A nondispersive infrared sensor (or NDIR sensor) is a simple spectroscopic sensor often used as a gas detector.It is non-dispersive in the fact that no dispersive element (e.g a prism or diffraction grating as is often present in other spectrometers) is used to separate out (like a monochromator) the broadband light into a narrow spectrum suitable for gas sensing.
HgCdTe can also detect in the short wave infrared SWIR atmospheric windows of 2.2 to 2.4 μm and 1.5 to 1.8 μm. HgCdTe is a common material in photodetectors of Fourier transform infrared spectrometers. This is because of the large spectral range of HgCdTe detectors and also the high quantum efficiency.
The method of Fourier-transform spectroscopy can also be used for absorption spectroscopy. The primary example is "FTIR Spectroscopy", a common technique in chemistry. In general, the goal of absorption spectroscopy is to measure how well a sample absorbs or transmits light at each different wavelength.
Pulse sequence used to obtain a two-dimensional Fourier transform infrared spectrum: is the coherence time, is the waiting time. The Fourier transform with respect to t 1 {\displaystyle t_{1}} provides the excitation spectrum (frequency ω 1 {\displaystyle \omega _{1}} ).
The invention of 1975 has as many detectors as the number of gases to be measured. Each detector has two chambers which both have an optically aligned infrared source and detector, and are both filled with one of the gases in the sample of air to be analyzed. Lying in the optical path are two cells with transparent ends.