Search results
Results From The WOW.Com Content Network
A high-level PXE overview. In computing, the Preboot eXecution Environment (PXE; often pronounced as / ˈ p ɪ k s iː / pixie, often called PXE boot (pixie boot), is a specification describing a standardized client–server environment that boots a software assembly, retrieved from a network, on PXE-enabled clients.
Prior to the development and ubiquitous adoption of the Plug and Play BIOS standard, an add-on device such as a hard disk controller or a network adapter card (NIC) was generally required to include an option ROM in order to be bootable, as the motherboard BIOS did not include any support for the device and so could not incorporate it into the BIOS's boot protocol.
BIOS interrupt calls perform hardware control or I/O functions requested by a program, return system information to the program, or do both. A key element of the purpose of BIOS calls is abstraction - the BIOS calls perform generally defined functions, and the specific details of how those functions are executed on the particular hardware of the system are encapsulated in the BIOS and hidden ...
The actual key depends on specific hardware. The settings key is most often Delete (Acer, ASRock, Asus PC, ECS, Gigabyte, MSI, Zotac) and F2 (Asus motherboard, Dell, Lenovo laptop, Origin PC, Samsung, Toshiba), but it can also be F1 (Lenovo desktop) and F10 . [50] Features present in the BIOS setup utility typically include:
iPXE is an open-source implementation of the Preboot eXecution Environment (PXE) client software and bootloader, created in 2010 as a fork of gPXE (gPXE was named Etherboot until 2008). [2] It can be used to enable computers without built-in PXE capability to boot from the network, or to provide additional features beyond what built-in PXE ...
When Secure Boot is enabled, it is initially placed in "setup" mode, which allows a public key known as the "platform key" (PK) to be written to the firmware. Once the key is written, Secure Boot enters "User" mode, where only UEFI drivers and OS boot loaders signed with the platform key can be loaded by the firmware.
As with the second-stage boot loader, network booting begins by using generic network access methods provided by the network interface's boot ROM, which typically contains a Preboot Execution Environment (PXE) image. No drivers are required, but the system functionality is limited until the operating system kernel and drivers are transferred ...
At boot time, a workstation that has been set to boot from PXE will issue a BOOTP request via the network. Once the request is received, the DHCP Server will supply an IP address to the machine, and the DNS server will point the client computer to the RIS server, which in turn will issue a disc boot image (often called the "OS Chooser").