Search results
Results From The WOW.Com Content Network
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
Suffix arrays are closely related to suffix trees: . Suffix arrays can be constructed by performing a depth-first traversal of a suffix tree. The suffix array corresponds to the leaf-labels given in the order in which these are visited during the traversal, if edges are visited in the lexicographical order of their first character.
The next pass, 3-sorting, performs insertion sort on the three subarrays (a 1, a 4, a 7, a 10), (a 2, a 5, a 8, a 11), (a 3, a 6, a 9, a 12). The last pass, 1-sorting, is an ordinary insertion sort of the entire array (a 1,..., a 12). As the example illustrates, the subarrays that Shellsort operates on are initially short; later they are longer ...
Elements are distributed among bins Unlike bucket sorting which sorts after all the buckets are filled, the elements are insertion sorted as they are inserted. ProxmapSort, or Proxmap sort, is a sorting algorithm that works by partitioning an array of data items, or keys, into a number of "subarrays" (termed buckets, in similar sorts).
Similar to generic bucket sort as described above, ProxmapSort works by dividing an array of keys into subarrays via the use of a "map key" function that preserves a partial ordering on the keys; as each key is added to its subarray, insertion sort is used to keep that subarray sorted, resulting in the entire array being in sorted order when ...
For data in which the maximum key size is significantly smaller than the number of data items, counting sort may be parallelized by splitting the input into subarrays of approximately equal size, processing each subarray in parallel to generate a separate count array for each subarray, and then merging the count arrays.
The outer loop of block sort is identical to a bottom-up merge sort, where each level of the sort merges pairs of subarrays, A and B, in sizes of 1, then 2, then 4, 8, 16, and so on, until both subarrays combined are the array itself.
While the terms allude to the rows and columns of a two-dimensional array, i.e. a matrix, the orders can be generalized to arrays of any dimension by noting that the terms row-major and column-major are equivalent to lexicographic and colexicographic orders, respectively. It is also worth noting that matrices, being commonly represented as ...