Search results
Results From The WOW.Com Content Network
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
Iterators generalize pointers to elements of an array (which indeed can be used as iterators), and their syntax is designed to resemble that of C pointer arithmetic, where the * and -> operators are used to reference the element to which the iterator points and pointer arithmetic operators like ++ are used to modify iterators in the traversal ...
In Python, a generator can be thought of as an iterator that contains a frozen stack frame. Whenever next() is called on the iterator, Python resumes the frozen frame, which executes normally until the next yield statement is reached. The generator's frame is then frozen again, and the yielded value is returned to the caller.
Python does not contain the classical for loop, rather a foreach loop is used to iterate over the output of the built-in range() function which returns an iterable sequence of integers. for i in range ( 1 , 6 ): # gives i values from 1 to 5 inclusive (but not 6) # statements print ( i ) # if we want 6 we must do the following for i in range ( 1 ...
Note how the use of A[i][j] with multi-step indexing as in C, as opposed to a neutral notation like A(i,j) as in Fortran, almost inevitably implies row-major order for syntactic reasons, so to speak, because it can be rewritten as (A[i])[j], and the A[i] row part can even be assigned to an intermediate variable that is then indexed in a separate expression.
The visitor pattern may be used for iteration over container-like data structures just like Iterator pattern but with limited functionality. [ 3 ] : 288 For example, iteration over a directory structure could be implemented by a function class instead of more conventional loop pattern .
In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value.
Iterators constitute alternative language constructs to loops, which ensure consistent iterations over specific data structures. They can eventually save time and effort in later coding attempts. In particular, an iterator allows one to repeat the same kind of operation at each node of such a data structure, often in some pre-defined order.