Ad
related to: royer oscillator principle
Search results
Results From The WOW.Com Content Network
There are other examples of self-oscillating inverters (and converters) that are sometimes referred to by the same name "Royer" (or variations thereof), despite the fact that they operate by completely different principles. The Baxandall Oscillator is a notable example, as it is sometimes referred to as a "resonant Royer", or "self-resonant ...
Simple relaxation oscillator made by feeding back an inverting Schmitt trigger's output voltage through a RC network to its input.. An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, [1] [2] [3] powered by a direct current (DC) source.
A blocking oscillator (sometimes called a pulse oscillator) is a simple configuration of discrete electronic components which can produce a free-running signal, requiring only a resistor, a transformer, and one amplifying element such as a transistor or vacuum tube.
A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Phase portrait of damped oscillator, with increasing damping strength. All real-world oscillator systems are thermodynamically irreversible. This means there are dissipative processes such as friction or electrical resistance which continually convert some of the energy stored in the oscillator into heat in the environment. This is called damping.
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.
Nothing prevents the phase tube from returning completely to its starting volume before all the possible phase volume is exhausted. A trivial example of this is the harmonic oscillator. Systems that do cover all accessible phase volume are called ergodic (this of course depends on the definition of "accessible volume").