Ad
related to: optical coherence physics
Search results
Results From The WOW.Com Content Network
The property of coherence is the basis for commercial applications such as holography, the Sagnac gyroscope, radio antenna arrays, optical coherence tomography and telescope interferometers (Astronomical optical interferometers and radio telescopes).
In physics, coherence theory is the study of optical effects arising from partially coherent light and radio sources. Partially coherent sources are sources where the coherence time or coherence length are limited by bandwidth, by thermal noise, or by other effect. Many aspects of modern coherence theory are studied in quantum optics.
Major study in optical physics is also devoted to quantum optics and coherence, and to femtosecond optics. [1] In optical physics, support is also provided in areas such as the nonlinear response of isolated atoms to intense, ultra-short electromagnetic fields, the atom-cavity interaction at high fields, and quantum properties of the ...
The theoretical explanation of the difference between the correlations of photon pairs in thermal and in laser beams was first given by Roy J. Glauber, who was awarded the 2005 Nobel Prize in Physics "for his contribution to the quantum theory of optical coherence". This result was met with much skepticism in the physics community.
In quantum optics, correlation functions are used to characterize the statistical and coherence properties – the ability of waves to interfere – of electromagnetic radiation, like optical light. Higher order coherence or n-th order coherence (for any positive integer n>1) extends the concept of coherence to quantum optics and coincidence ...
He was the Mallinckrodt Professor of Physics at Harvard University and Adjunct Professor of Optical Sciences at the University of Arizona. Born in New York City, he was awarded one half of the 2005 Nobel Prize in Physics "for his contribution to the quantum theory of optical coherence", with the other half shared by John L. Hall and Theodor W ...
Macroscopically, Maxwell's equations show that in the absence of free charges and currents an electromagnetic field interacts with matter via the optical polarization .The wave equation for the electric field reads () (,) = (,) and shows that the second derivative with respect to time of , i.e., , appears as a source term in the wave equation for the electric field .
In physics, coherence length is the propagation distance over which a coherent wave (e.g. an electromagnetic wave) maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves differ by less than the coherence length.