When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bulk modulus - Wikipedia

    en.wikipedia.org/wiki/Bulk_modulus

    Strictly speaking, the bulk modulus is a thermodynamic quantity, and in order to specify a bulk modulus it is necessary to specify how the pressure varies during compression: constant- temperature (isothermal ), constant- entropy (isentropic ), and other variations are possible. Such distinctions are especially relevant for gases.

  3. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    At high P-T, the pressure for the ideal gas is calculated by the force divided by the area, while the pressure for the solid is calculated from bulk modulus (K, or B) and volume at room temperature, or from Eq (1) at high P-T. A pressure gauge's bulk modulus is known, and its thermal equation of state is well known.

  4. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Kinetic theory of gases. The temperature of the ideal gas is proportional to the average kinetic energy of its particles. The size of helium atoms relative to their spacing is shown to scale under 1,950 atmospheres of pressure. The atoms have an average speed relative to their size slowed down here two trillion fold from that at room temperature.

  5. Fermi gas - Wikipedia

    en.wikipedia.org/wiki/Fermi_gas

    An ideal Fermi gas or free Fermi gas is a physical model assuming a collection of non-interacting fermions in a constant potential well. Fermions are elementary or composite particles with half-integer spin, thus follow Fermi–Dirac statistics. The equivalent model for integer spin particles is called the Bose gas (an ensemble of non ...

  6. Ideal gas - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas

    An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. [1] The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be ...

  7. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations (/ nævˈjeɪ stoʊks / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of ...

  8. Boyle's law - Wikipedia

    en.wikipedia.org/wiki/Boyle's_law

    Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant. Therefore, when the volume is halved, the pressure is doubled; and if the volume is doubled, the pressure is halved.

  9. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    Substituting from the ideal gas equation gives finally: = where n = number of moles of gas in the thermodynamic system under consideration and R = universal gas constant. On a per mole basis, the expression for difference in molar heat capacities becomes simply R for ideal gases as follows: