When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pyruvate carboxylase - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_carboxylase

    The reaction it catalyzes is: pyruvate + HCO − 3 + ATP → oxaloacetate + ADP + P. It is an important anaplerotic reaction that creates oxaloacetate from pyruvate. PC contains a biotin prosthetic group [1] and is typically localized to the mitochondria in eukaryotes with exceptions to some fungal species such as Aspergillus nidulans which have a cytosolic PC.

  3. Oxaloacetic acid - Wikipedia

    en.wikipedia.org/wiki/Oxaloacetic_acid

    Firstly the oxaloacetate is reduced to malate using NADH. Then the malate is decarboxylated to pyruvate. Now this pyruvate can easily enter the mitochondria, where it is carboxylated again to oxaloacetate by pyruvate carboxylase. In this way, the transfer of acetyl-CoA that is from the mitochondria into the cytoplasm produces a molecule of NADH.

  4. Oxaloacetate decarboxylase - Wikipedia

    en.wikipedia.org/wiki/Oxaloacetate_decarboxylase

    Oxaloacetate decarboxylase is a carboxy-lyase involved in the conversion of oxaloacetate into pyruvate.. It is categorized under EC 4.1.1.3.. Oxaloacetate decarboxylase activity in a given organism may be due to activity of malic enzyme, pyruvate kinase, malate dehydrogenase, pyruvate carboxylase and PEP carboxykinase or the activity of "real" oxaloacetate decarboxylases.

  5. Anaplerotic reactions - Wikipedia

    en.wikipedia.org/wiki/Anaplerotic_reactions

    Malate, in the mitochondrial matrix, can be used to make pyruvate (catalyzed by malic enzyme) or oxaloacetic acid, both of which can enter the citric acid cycle. Glutamine can also be used to produce oxaloacetate during anaplerotic reactions in various cell types through "glutaminolysis," which is also seen in many c-Myc transformed cells. [3]

  6. Glyceroneogenesis - Wikipedia

    en.wikipedia.org/wiki/Glyceroneogenesis

    Pyruvate generated from alanine will enter glyceroneogenesis and generate glycerol 3-phosphate. Glutamate can also enter glyceroneogenesis. Since the key reaction of glyceroneogenesis is the decarboxylation and phosphorylation of oxaloacetate to phosphoenolpyruvate, in theory any biochemical pathway which generates oxaloacetate is related to ...

  7. Gluconeogenesis - Wikipedia

    en.wikipedia.org/wiki/Gluconeogenesis

    Gluconeogenesis begins in the mitochondria with the formation of oxaloacetate by the carboxylation of pyruvate. This reaction also requires one molecule of ATP, and is catalyzed by pyruvate carboxylase. This enzyme is stimulated by high levels of acetyl-CoA (produced in β-oxidation in the liver) and inhibited by high levels of ADP and glucose.

  8. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    Pyruvate molecules produced by glycolysis are actively transported across the inner mitochondrial membrane, and into the matrix where they can either be oxidized and combined with coenzyme A to form CO 2, acetyl-CoA, and NADH, [35] or they can be carboxylated (by pyruvate carboxylase) to form oxaloacetate.

  9. Malate dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Malate_dehydrogenase

    Pyruvate in the mitochondria is acted upon by pyruvate carboxylase to form oxaloacetate, a citric acid cycle intermediate. In order to get the oxaloacetate out of the mitochondria, malate dehydrogenase reduces it to malate, and it then traverses the inner mitochondrial membrane.