When.com Web Search

  1. Ads

    related to: difference between rhomboid and parallelogram area worksheet free answer

Search results

  1. Results From The WOW.Com Content Network
  2. Rhomboid - Wikipedia

    en.wikipedia.org/wiki/Rhomboid

    Traditionally, in two-dimensional geometry, a rhomboid is a parallelogram in which adjacent sides are of unequal lengths and angles are non-right angled.. The terms "rhomboid" and "parallelogram" are often erroneously conflated with each other (i.e, when most people refer to a "parallelogram" they almost always mean a rhomboid, a specific subtype of parallelogram); however, while all rhomboids ...

  3. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term rhomboid is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. [a] Three equivalent definitions of parallelepiped are a hexahedron with three pairs of parallel faces,

  4. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram. The base × height area formula can also be derived using the figure to the right. The area K of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the ...

  5. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).

  6. Rhombohedron - Wikipedia

    en.wikipedia.org/wiki/Rhombohedron

    In geometry, a rhombohedron (also called a rhombic hexahedron [1] [2] or, inaccurately, a rhomboid [a]) is a special case of a parallelepiped in which all six faces are congruent rhombi. [3] It can be used to define the rhombohedral lattice system , a honeycomb with rhombohedral cells.

  7. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Rhomboid: a parallelogram in which adjacent sides are of unequal lengths, and some angles are oblique (equiv., having no right angles). Informally: "a pushed-over oblong". Not all references agree; some define a rhomboid as a parallelogram that is not a rhombus. [4] Rectangle: all four angles are right angles (equiangular). An equivalent ...

  8. Fresnel rhomb - Wikipedia

    en.wikipedia.org/wiki/Fresnel_rhomb

    The rhomb usually takes the form of a right parallelepiped, or in other words, a solid with six parallelogram faces (a square is to a cube as a parallelogram is to a parallelepiped). If the incident ray is perpendicular to one of the smaller rectangular faces, the angle of incidence and reflection at both of the longer faces is equal to the ...

  9. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    green area = blue area Construction for proof of parallelogram generalization. Pappus's area theorem is a further generalization, that applies to triangles that are not right triangles, using parallelograms on the three sides in place of squares (squares are a special case, of course). The upper figure shows that for a scalene triangle, the ...