Search results
Results From The WOW.Com Content Network
Whereas osmolality (with an "l") is defined as the number of osmoles (Osm) of solute per kilogram of solvent (osmol/kg or Osm/kg), osmolarity (with an "r") is defined as the number of osmoles of solute per liter (L) of solution (osmol/L or Osm/L). As such, larger numbers indicate a greater concentration of solutes in the plasma.
Osmotic concentration, formerly known as osmolarity, [1] is the measure of solute concentration, defined as the number of osmoles (Osm) of solute per litre (L) of solution (osmol/L or Osm/L). The osmolarity of a solution is usually expressed as Osm/L (pronounced "osmolar"), in the same way that the molarity of a solution is expressed as "M ...
The osmol gap is typically calculated with the following formula (all values in mmol/L): = = ([+] + [] + []) In non-SI laboratory units: Calculated osmolality = 2 x [Na mmol/L] + [glucose mg/dL] / 18 + [BUN mg/dL] / 2.8 + [ethanol/3.7] [3] (note: the values 18 and 2.8 convert mg/dL into mmol/L; the molecular weight of ethanol is 46, but empiric data shows that it does not act as an ideal ...
A relative insulin deficiency leads to a serum glucose that is usually higher than 33 mmol/L (600 mg/dL), and a resulting serum osmolarity that is greater than 320 mOsm. This leads to excessive urination (more specifically an osmotic diuresis ), which, in turn, leads to volume depletion and hemoconcentration that causes a further increase in ...
Stool osmotic gap is calculated as 290 mOsm/kg − 2 × (stool Na + stool K). [2] 290 mOsm/kg is the presumed stool osmolality, and the measured concentration of sodium and potassium cations is doubled to account for the corresponding anions which must be present. [citation needed] A normal gap is between 50 and 100 mOsm/kg, [3] corresponding ...
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
The osmometer uses the solution's freezing point depression to establish its strength. It is also used to determine the level of osmotically appropriate body fluid in various chemicals dissolved in the blood using the relationship in which a mole of dissolved substance reduces the freezing point of a kilogram of water by 1.86 °C (35.35 °F). [1]
For example, for an individual with a urine osmolality of 140 mOsm/L, plasma osmolality of 280 mOsm/L, and a urine production of 4 ml/min, the free water clearance is 2 ml/min, obtained from C H 2 O = 4 ml/min − 140 mOsm/L 280 mOsm/L × 4 ml/min = 2 ml/min {\displaystyle C_{H_{2}O}=4\ {\mbox{ml/min}}-{\frac {140\ {\mbox{mOsm/L}}}{280\ {\mbox ...