Search results
Results From The WOW.Com Content Network
The SI unit of spectral radiance in frequency is the watt per steradian per square metre per hertz (W·sr −1 ·m −2 ·Hz −1) and that of spectral radiance in wavelength is the watt per steradian per square metre per metre (W·sr −1 ·m −3)—commonly the watt per steradian per square metre per nanometre (W·sr −1 ·m −2 ·nm −1).
The Star-Spectroscope of the Lick Observatory in 1898. Designed by James Keeler and constructed by John Brashear.. Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and other celestial objects.
Spectral radiance Specific intensity L e,Ω,ν [nb 3] watt per steradian per square metre per hertz W⋅sr −1 ⋅m −2 ⋅Hz −1: M⋅T −2: Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr −1 ⋅m −2 ⋅nm −1. This is a directional quantity. This is sometimes also confusingly called ...
Brightness temperature or radiance temperature is a measure of the intensity of electromagnetic energy coming from a source. [1] In particular, it is the temperature at which a black body would have to be in order to duplicate the observed intensity of a grey body object at a frequency ν {\displaystyle \nu } . [ 2 ]
Radiance is the integral of the spectral radiance over all frequencies or wavelengths. For radiation emitted by the surface of an ideal black body at a given temperature, spectral radiance is governed by Planck's law, while the integral of its radiance, over the hemisphere into which its surface radiates, is given by the Stefan–Boltzmann law.
Photometry is also used in the observation of variable stars, [4] by various techniques such as, differential photometry that simultaneously measures the brightness of a target object and nearby stars in the starfield [5] or relative photometry by comparing the brightness of the target object to stars with known fixed magnitudes. [6]
Spectral radiance Specific intensity L e,Ω,ν [nb 3] watt per steradian per square metre per hertz W⋅sr −1 ⋅m −2 ⋅Hz −1: M⋅T −2: Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr −1 ⋅m −2 ⋅nm −1. This is a directional quantity. This is sometimes also confusingly called ...
Devices with high spectral resolution can measure the reflectance for the material within narrow bands of wavelength. Spectral resolution concerns the capability of a sensor in a spectroradiometer to measure the light intensity according to specific wavelengths on the electromagnetic spectrum.