Search results
Results From The WOW.Com Content Network
The Star-Spectroscope of the Lick Observatory in 1898. Designed by James Keeler and constructed by John Brashear.. Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and other celestial objects.
Achieve this spectral irradiance measurement with an accuracy of better than 5%, and with long-term repeatability of 0.5%/yr. Use the solar/stellar comparison technique to relate the solar irradiance to the ensemble average flux from a number of bright, early-type stars (same stars used by the Upper Atmosphere Research Satellite (UARS) SOLSTICE ...
Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m −2 ⋅nm −1. "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity". M e,λ [nb 4] watt per square metre, per metre W/m 3: M⋅L −1 ⋅T −3: Radiant exposure: H e: joule ...
The SI unit of spectral radiance in frequency is the watt per steradian per square metre per hertz (W·sr −1 ·m −2 ·Hz −1) and that of spectral radiance in wavelength is the watt per steradian per square metre per metre (W·sr −1 ·m −3)—commonly the watt per steradian per square metre per nanometre (W·sr −1 ·m −2 ·nm −1).
The spectral flux density or monochromatic flux, S, of a source is the integral of the spectral radiance, B, over the source solid angle: = (,). The unit is named after pioneering US radio astronomer Karl Guthe Jansky and is defined as
Spectral resolution concerns the capability of a sensor in a spectroradiometer to measure the light intensity according to specific wavelengths on the electromagnetic spectrum. It is related to the amount of spectral detail to be detected in each spectral band so as to discriminate among different materials. [ 11 ]
Radiance is the integral of the spectral radiance over all frequencies or wavelengths. For radiation emitted by the surface of an ideal black body at a given temperature, spectral radiance is governed by Planck's law, while the integral of its radiance, over the hemisphere into which its surface radiates, is given by the Stefan–Boltzmann law.
An object's surface brightness is its brightness per unit solid angle as seen in projection on the sky, and measurement of surface brightness is known as surface photometry. [9] A common application would be measurement of a galaxy's surface brightness profile, meaning its surface brightness as a function of distance from the galaxy's center.