Search results
Results From The WOW.Com Content Network
The value of Poisson's ratio is the negative of the ratio of transverse strain to axial strain. For small values of these changes, ν is the amount of transversal elongation divided by the amount of axial compression. Most materials have Poisson's ratio values ranging between 0.0 and 0.5.
algorithm poisson random number (Knuth): init: Let L ← e −λ, k ← 0 and p ← 1. do: k ← k + 1. Generate uniform random number u in [0,1] and let p ← p × u. while p > L. return k − 1. The complexity is linear in the returned value k, which is λ on average. There are many other algorithms to improve this.
The earliest published example of a material with negative Poisson's constant is due to A. G. Kolpakov in 1985, "Determination of the average characteristics of elastic frameworks"; the next synthetic auxetic material was described in Science in 1987, entitled "Foam structures with a Negative Poisson's Ratio" [1] by R.S. Lakes from the ...
2 Poisson's ratio. 3 Bulk modulus. 4 Shear modulus. 5 References. 6 See also. Toggle the table of contents. Elastic properties of the elements (data page) 1 language.
The coefficient of lateral earth pressure, K, is defined as the ratio of the horizontal effective stress, σ’ h, to the vertical effective stress, σ’ v.The effective stress is the intergranular stress calculated by subtracting the pore water pressure from the total stress as described in soil mechanics.
The two parameters together constitute a parameterization of the elastic moduli for homogeneous isotropic media, popular in mathematical literature, and are thus related to the other elastic moduli; for instance, the bulk modulus can be expressed as K = λ + 2 / 3 μ.
Poisson-type random measures are a family of three random counting measures which are closed under restriction to a subspace, i.e. closed under thinning. They are the only distributions in the canonical non-negative power series family of distributions to possess this property and include the Poisson distribution, negative binomial distribution, and binomial distribution. [1]
These guys certainly think so : "For isotropic elastic continuum analysis, a single value of Poisson’s ratio is sufficient to fully characterize the material response since standard plastic flow rules assume incompressibility, and a Poisson’s ratio of 0.5 in the post-yield regime.