When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.

  3. Brahmagupta - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta

    Given the lengths of the sides of any cyclic quadrilateral, Brahmagupta gave an approximate and an exact formula for the figure's area, 12.21. The approximate area is the product of the halves of the sums of the sides and opposite sides of a triangle and a quadrilateral.

  4. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]

  5. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Four unequal lengths, each less than the sum of the other three, are the sides of each of three non-congruent cyclic quadrilaterals, [13] which by Brahmagupta's formula all have the same area. Specifically, for sides a, b, c, and d, side a could be opposite any of side b, side c, or side d.

  6. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the quadrilateral to zero. Brahmagupta's formula gives the area ⁠ ⁠ of a cyclic quadrilateral whose sides have lengths ⁠, ⁠ ⁠, ⁠ ⁠, ⁠ ⁠ ⁠ as = () () where = (+ + +) is the semiperimeter. Heron's formula is ...

  7. Bretschneider's formula - Wikipedia

    en.wikipedia.org/wiki/Bretschneider's_formula

    Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]

  8. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    This reduces to Brahmagupta's formula for the area of a cyclic quadrilateral—when A + C = 180°. Another area formula in terms of the sides and angles, with angle C being between sides b and c , and A being between sides a and d , is

  9. Indian mathematics - Wikipedia

    en.wikipedia.org/wiki/Indian_mathematics

    In the latter section, he stated his famous theorem on the diagonals of a cyclic quadrilateral: [73] Brahmagupta's theorem: If a cyclic quadrilateral has diagonals that are perpendicular to each other, then the perpendicular line drawn from the point of intersection of the diagonals to any side of the quadrilateral always bisects the opposite side.