Search results
Results From The WOW.Com Content Network
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
Hypothesis testing provides a means of finding test statistics used in significance testing. [13] The concept of power is useful in explaining the consequences of adjusting the significance level and is heavily used in sample size determination. The two methods remain philosophically distinct. [15]
is a decision rule which satisfies (2). (This is a 1-tailed test.) In such a scenario, achieving this with a probability of at least 1−β when the alternative hypothesis H a is true becomes imperative. Here, the sample average originates from a Normal distribution with a mean of μ *. Thus, the requirement is expressed as:
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
The hypothesis is that the mean of the first distribution is higher than the mean of the second; the null hypothesis is that both groups of samples are drawn from the same distribution. There are 126 distinct ways to put 4 values into one group and 5 into another (9-choose-4 or 9-choose-5).
Under Fisher's method, two small p-values P 1 and P 2 combine to form a smaller p-value.The darkest boundary defines the region where the meta-analysis p-value is below 0.05.. For example, if both p-values are around 0.10, or if one is around 0.04 and one is around 0.25, the meta-analysis p-value is around 0
The new multiple range test proposed by Duncan makes use of special protection levels based upon degrees of freedom.Let , = be the protection level for testing the significance of a difference between two means; that is, the probability that a significant difference between two means will not be found if the population means are equal.
A two-tailed test applied to the normal distribution. A one-tailed test, showing the p-value as the size of one tail. In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic. A two-tailed test ...