Search results
Results From The WOW.Com Content Network
Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential ...
The parameters depend on the physical system under consideration. In the context of fish skin pigmentation, the associated equation is a three field reaction–diffusion one in which the linear parameters are associated with pigmentation cell concentration and the diffusion parameters are not the same for all fields. [9]
The theory, which can be called a reaction–diffusion theory of morphogenesis, has become a basic model in theoretical biology. [2] Such patterns have come to be known as Turing patterns . For example, it has been postulated that the protein VEGFC can form Turing patterns to govern the formation of lymphatic vessels in the zebrafish embryo.
A stirred BZ reaction mixture showing changes in color over time. The discovery of the phenomenon is credited to Boris Belousov.In 1951, while trying to find the non-organic analog to the Krebs cycle, he noted that in a mix of potassium bromate, cerium(IV) sulfate, malonic acid, and citric acid in dilute sulfuric acid, the ratio of concentration of the cerium(IV) and cerium(III) ions ...
Examples of anomalous diffusion in nature have been observed in ultra-cold atoms, [3] harmonic spring-mass systems, [4] scalar mixing in the interstellar medium, [5] telomeres in the nucleus of cells, [6] ion channels in the plasma membrane, [7] colloidal particle in the cytoplasm, [8] [9] [10] moisture transport in cement-based materials, [11 ...
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]
Possible mechanisms of pattern formation in biological systems include the classical reaction–diffusion model proposed by Alan Turing [10] and the more recently found elastic instability mechanism which is thought to be responsible for the fold patterns on the cerebral cortex of higher animals, among other things. [11] [12]
An example of a positive non-linear effect is observed in the case of Sharpless epoxidation with the substrate geraniol.In all cases of chemical reactivity exhibiting (+)-NLE, there is an innate tradeoff between overall reaction rate and enantioselectivity. The overall rate is slower and the enantioselectivity is higher relative to a linear ...