Search results
Results From The WOW.Com Content Network
In mathematical writing, the greater-than sign is typically placed between two values being compared and signifies that the first number is greater than the second number. Examples of typical usage include 1.5 > 1 and 1 > −2. The less-than sign and greater-than sign always "point" to the smaller number.
So are 1 and 2, 1 and 9, or 1 and 0.2. However, 1 and 15 are not within an order of magnitude, since their ratio is 15/1 = 15 > 10. The reciprocal ratio, 1/15, is less than 0.1, so the same result is obtained. Differences in order of magnitude can be measured on a base-10 logarithmic scale in "decades" (i.e., factors of ten). [2]
Zero, or 0%. One cannot be more than itself! One. One is exactly as many as itself! stayed the same. 0%. Two 200% One more than one, or 100% more than one, because = +. Twice (two times) as many as one. doubled. 100% Three 300% Two times more than one, twice more than one, or 200% more than one, because = +.
In engineering sciences, less formal use of the notation is to state that one quantity is "much greater" than another, [5] normally by several orders of magnitude. The notation a ≪ b means that a is much less than b. [6] The notation a ≫ b means that a is much greater than b. [7]
In 1930, Lev Schnirelmann proved that any natural number greater than 1 can be written as the sum of not more than C prime numbers, where C is an effectively computable constant; see Schnirelmann density. [13] [14] Schnirelmann's constant is the lowest number C with this property. Schnirelmann himself obtained C < 800 000.
156: it is divisible by 2 and by 13. Subtracting 5 times the last digit from 2 times the rest of the number gives a multiple of 26. (Works because 52 is divisible by 26.) 1,248 : (124 × 2) − (8 × 5) = 208 = 26 × 8. 27: Sum the digits in blocks of three from right to left. (Works because 999 is divisible by 27.) 2,644,272: 2 + 644 + 272 = 918.
Singmaster's conjecture is a conjecture in combinatorial number theory, named after the British mathematician David Singmaster who proposed it in 1971. It says that there is a finite upper bound on the multiplicities of entries in Pascal's triangle (other than the number 1, which appears infinitely many times).
Then the triangle is in Euclidean space if the sum of the reciprocals of p, q, and r equals 1, spherical space if that sum is greater than 1, and hyperbolic space if the sum is less than 1. A harmonic divisor number is a positive integer whose divisors have a harmonic mean that is an integer. The first five of these are 1, 6, 28, 140, and 270.