Search results
Results From The WOW.Com Content Network
The actual logic is contained in event-handler routines. These routines handle the events to which the main program will respond. For example, a single left-button mouse-click on a command button in a GUI program may trigger a routine that will open another window, save data to a database or exit the application.
Twisted is an event-driven network programming framework written in Python and licensed under the MIT License.. Twisted projects variously support TCP, UDP, SSL/TLS, IP multicast, Unix domain sockets, many protocols (including HTTP, XMPP, NNTP, IMAP, SSH, IRC, FTP, and others), and much more.
DCI can be thought of as an event-driven programming paradigm, where some event (as a human gesture in a model-view-controller (MVC) architecture) triggers a use case. [3] The use case can be short-lived or long-lived. The events are called triggers, and they are handled in the environment in which DCI is embedded. This environment may be the ...
In computer science, the event loop (also known as message dispatcher, message loop, message pump, or run loop) is a programming construct or design pattern that waits for and dispatches events or messages in a program. The event loop works by making a request to some internal or external "event provider" (that generally blocks the request ...
Event-driven programming is often implemented using IoC so that the custom code need only be concerned with the handling of events, while the event loop and dispatch of events/messages is handled by the framework or the runtime environment. In web server application frameworks, dispatch is usually called routing, and handlers may be called ...
The reactor software design pattern is an event handling strategy that can respond to many potential service requests concurrently.The pattern's key component is an event loop, running in a single thread or process, which demultiplexes incoming requests and dispatches them to the correct request handler.
Event propagation models, such as bubbling, capturing, and pub/sub, define how events are distributed and handled within a system. Other key aspects include event loops, event queueing and prioritization, event sourcing, and complex event processing patterns. These mechanisms contribute to the flexibility and scalability of event-driven systems.
For example, a program might contain several calls to read files, but the action to perform when a file is not found depends on the meaning (purpose) of the file in question to the program and thus a handling routine for this abnormal situation cannot be located in low-level system code.