Search results
Results From The WOW.Com Content Network
An example of a proton pump that is not electrogenic, is the proton/potassium pump of the gastric mucosa which catalyzes a balanced exchange of protons and potassium ions. [citation needed] The combined transmembrane gradient of protons and charges created by proton pumps is called an electrochemical gradient.
This change in both the pH and electrochemical potential gradient between the inside of the cell and the outside produces a proton-motive force, as the protons will want to naturally flow back into the area of low concentration and with a voltage closer to zero from their current situation of being in an area of high concentration of positively ...
The gastric hydrogen potassium ATPase or H + /K + ATPase is the proton pump of the stomach.It exchanges potassium from the intestinal lumen with cytoplasmic hydronium [2] and is the enzyme primarily responsible for the acidification of the stomach contents and the activation of the digestive enzyme pepsin [3] (see gastric acid).
-ATPase or proton pump creates the electrochemical gradients in the plasma membrane of plants, fungi, protists, and many prokaryotes. Here, proton gradients are used to drive secondary transport processes. As such, it is essential for the uptake of most metabolites, and also for plant responses to the environment (e.g., movement of leaves).
The result is the disappearance of a proton from the cytoplasm and the appearance of a proton in the periplasm. Mitochondrial Complex III is this second type of proton pump, which is mediated by a quinone (the Q cycle). Some dehydrogenases are proton pumps, while others are not. Most oxidases and reductases are proton pumps, but some are not.
Furthermore, due to redox-driven proton pumping by coupling sites, the proton gradient is always inside-alkaline. For both of these reasons, protons flow in spontaneously, from the P side to the N side; the available free energy is used to synthesize ATP (see below). For this reason, PMF is defined for proton import, which is spontaneous.
The way bacteriorhodopsin generates a proton gradient in Archaea is through a proton pump. The proton pump relies on proton carriers to drive protons from the side of the membrane with a low H + concentration to the side of the membrane with a high H + concentration. In bacteriorhodopsin, the proton pump is activated by absorption of photons of ...
The P-type ATPases, also known as E 1-E 2 ATPases, are a large group of evolutionarily related ion and lipid pumps that are found in bacteria, archaea, and eukaryotes. [1] P-type ATPases are α-helical bundle primary transporters named based upon their ability to catalyze auto- (or self-) phosphorylation (hence P) of a key conserved aspartate residue within the pump and their energy source ...