Search results
Results From The WOW.Com Content Network
An axon (from Greek ἄξων áxōn, axis) or nerve fiber (or nerve fibre: see spelling differences) is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action potentials away from the nerve cell body. The function of the axon is to transmit information to different ...
Multipolar pyramidal -- some of the longest axons in the body. Function: Excitatory projection neuron to spinal cord: Neurotransmitter: Glutamate: Presynaptic connections: Superficial cortical layers, premotor cortex: Postsynaptic connections: Ventral horn of the spinal cord: Identifiers; NeuroLex ID: sao786552500: Anatomical terms of neuroanatomy
The longest axon of a human motor neuron can be over a meter long, reaching from the base of the spine to the toes. Sensory neurons can have axons that run from the toes to the posterior column of the spinal cord, over 1.5 meters in adults.
Some neurons are responsible for conveying information over long distances. For example, motor neurons, which travel from the spinal cord to the muscle, can have axons up to a meter in length in humans. The longest axon in the human body belongs to the Sciatic Nerve and runs from the great toe to the base of the spinal cord. These are ...
A Golgi type I neuron has a long axon that begins in the grey matter of the central nervous system and may extend from there. Their cell bodies were mostly multipolar, yet occasionally they might have been triangular in shape and lacking any appendages or spines. They possessed three to ten principal dendrites.
Many of the extensions are cytoplasmic protrusions such as the axon and dendrite of a neuron, known also as cytoplasmic processes. Different glial cells project cytoplasmic processes. In the brain, the processes of astrocytes form terminal endfeet, foot processes that help to form protective barriers in the brain.
The bulb-like end of the axon, called the axon terminal, is separated from the dendrite of the following neuron by a small gap called a synaptic cleft. When the action potential travels to the axon terminal, neurotransmitters are released across the synapse and bind to the post-synaptic receptors, continuing the nerve impulse. [4]
A reconstruction of a pyramidal cell. Soma and dendrites are labeled in red, axon arbor in blue. (1) Soma, (2) Basal dendrite, (3) Apical dendrite, (4) Axon, (5) Collateral axon. One of the main structural features of the pyramidal neuron is the conic shaped soma, or cell body, after which the neuron is named.