When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rational data type - Wikipedia

    en.wikipedia.org/wiki/Rational_data_type

    Some programming languages provide a built-in (primitive) rational data type to represent rational numbers like 1/3 and −11/17 without rounding, and to do arithmetic on them. Examples are the ratio type of Common Lisp, and analogous types provided by most languages for algebraic computation, such as Mathematica and Maple.

  3. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Example: (expt 10 100) produces the expected (large) result. Exact numbers also include rationals, so (/ 3 4) produces 3/4. One of the languages implemented in Guile is Scheme. Haskell: the built-in Integer datatype implements arbitrary-precision arithmetic and the standard Data.Ratio module implements rational numbers.

  4. Numerical tower - Wikipedia

    en.wikipedia.org/wiki/Numerical_tower

    In the Python examples, we can see that numerical issues freely arise with an inconsistent application of the semantics of its type coercion. While 1 / 3 in Python is treated as a call to divide 1 by 3, yielding a float, the inclusion of rationals inside a complex number, though clearly permissible, implicitly coerces them from rationals into ...

  5. Data type - Wikipedia

    en.wikipedia.org/wiki/Data_type

    For example, in the Python programming language, int represents an arbitrary-precision integer which has the traditional numeric operations such as addition, subtraction, and multiplication. However, in the Java programming language , the type int represents the set of 32-bit integers ranging in value from −2,147,483,648 to 2,147,483,647 ...

  6. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    Given an integer a and a non-zero integer d, it can be shown that there exist unique integers q and r, such that a = qd + r and 0 ≤ r < | d |. The number q is called the quotient, while r is called the remainder. (For a proof of this result, see Euclidean division. For algorithms describing how to calculate the remainder, see division algorithm.)

  7. Python (programming language) - Wikipedia

    en.wikipedia.org/wiki/Python_(programming_language)

    Since 7 October 2024, Python 3.13 is the latest stable release, and it and, for few more months, 3.12 are the only releases with active support including for bug fixes (as opposed to just for security) and Python 3.9, [55] is the oldest supported version of Python (albeit in the 'security support' phase), due to Python 3.8 reaching end-of-life.

  8. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    In base ten, a sixteen-bit integer is certainly adequate as it allows up to 32767. However, this example cheats, in that the value of n is not itself limited to a single digit. This has the consequence that the method will fail for n > 3200 or so. In a more general implementation, n would also use a multi-digit representation.

  9. Continuous or discrete variable - Wikipedia

    en.wikipedia.org/wiki/Continuous_or_discrete...

    In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]