Search results
Results From The WOW.Com Content Network
In physics, angular velocity (symbol ω or , the lowercase Greek letter omega), also known as angular frequency vector, [1] is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates (spins or revolves) around an axis of rotation and how fast the axis itself changes direction.
The yaw rate or yaw velocity of a car, aircraft, projectile or other rigid body is the angular velocity of this rotation, or rate of change of the heading angle when the aircraft is horizontal. It is commonly measured in degrees per second or radians per second.
A diagram of angular momentum. Showing angular velocity (Scalar) and radius. In physics, angular mechanics is a field of mechanics which studies rotational movement. It studies things such as angular momentum, angular velocity, and torque. It also studies more advanced things such as Coriolis force [1] and Angular aerodynamics.
Also in some frames not tied to the body can it be possible to obtain such simple (diagonal tensor) equations for the rate of change of the angular momentum. Then ω must be the angular velocity for rotation of that frames axes instead of the rotation of the body. It is however still required that the chosen axes are still principal axes of ...
where I s is the moment of inertia, ω s is the angular velocity of spin about the spin axis, m is the mass, g is the acceleration due to gravity, θ is the angle between the spin axis and the axis of precession and r is the distance between the center of mass and the pivot. The torque vector originates at the center of mass.
The angular velocity is defined as /, where T is the rotation period, hence =. Thus, tangential speed will be directly proportional to r when all parts of a system simultaneously have the same ω , as for a wheel, disk, or rigid wand.
Likewise, the momentum vector is the velocity vector (a polar vector) times mass (a scalar), so is a polar vector. Angular momentum is the cross product of a displacement (a polar vector) and momentum (a polar vector), and is therefore a pseudovector. Torque is angular momentum (a pseudovector) divided by time (a scalar), so is also a pseudovector.
In general, the angular velocity in an n-dimensional space is the time derivative of the angular displacement tensor, which is a second rank skew-symmetric tensor.. This tensor Ω will have n(n−1)/2 independent components, which is the dimension of the Lie algebra of the Lie group of rotations of an n-dimensional inner product space.