When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Z-test - Wikipedia

    en.wikipedia.org/wiki/Z-test

    Difference between Z-test and t-test: Z-test is used when sample size is large (n>50), or the population variance is known. t-test is used when sample size is small (n<50) and population variance is unknown. There is no universal constant at which the sample size is generally considered large enough to justify use of the plug-in test.

  3. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    Hypothesis testing is also taught at the postgraduate level. Statisticians learn how to create good statistical test procedures (like z, Student's t, F and chi-squared). Statistical hypothesis testing is considered a mature area within statistics, [25] but a limited amount of development continues.

  4. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    In a 3-way ANOVA with factors x, y and z, the ANOVA model includes terms for the main effects (x, y, z) and terms for interactions (xy, xz, yz, xyz). All terms require hypothesis tests. The proliferation of interaction terms increases the risk that some hypothesis test will produce a false positive by chance.

  5. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    Simple back-of-the-envelope test takes the sample maximum and minimum and computes their z-score, or more properly t-statistic (number of sample standard deviations that a sample is above or below the sample mean), and compares it to the 68–95–99.7 rule: if one has a 3σ event (properly, a 3s event) and substantially fewer than 300 samples, or a 4s event and substantially fewer than 15,000 ...

  6. False discovery rate - Wikipedia

    en.wikipedia.org/wiki/False_discovery_rate

    The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.

  7. Family-wise error rate - Wikipedia

    en.wikipedia.org/wiki/Family-wise_error_rate

    The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.

  8. Test statistic - Wikipedia

    en.wikipedia.org/wiki/Test_statistic

    Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test.

  9. Two-sample hypothesis testing - Wikipedia

    en.wikipedia.org/wiki/Two-sample_hypothesis_testing

    In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .