Search results
Results From The WOW.Com Content Network
An example of a wind turbine, this 3 bladed turbine is the classic design of modern wind turbines Wind turbine components : 1-Foundation, 2-Connection to the electric grid, 3-Tower, 4-Access ladder, 5-Wind orientation control (Yaw control), 6-Nacelle, 7-Generator, 8-Anemometer, 9-Electric or Mechanical Brake, 10-Gearbox, 11-Rotor blade, 12-Blade pitch control, 13-Rotor hub
QBlade is a public source wind turbine calculation software, distributed under the Academic Public License. The software is seamlessly integrated into XFOIL, an airfoil design and analysis tool. The purpose of this software is the design and aerodynamic simulation of wind turbine blades.
Wind farm monitoring software is a software that allows people to see if the wind turbines are running well or are going to become broken. Other functions of monitoring software is reporting, analysis of measurement data (power curve) and tools for monitoring of environmental constraints (bat control, etc.).
The active yaw systems are equipped with some sort of torque producing device able to rotate the nacelle of the wind turbine against the stationary tower based on automatic signals from wind direction sensors or manual actuation (control system override). The active yaw systems are considered to be the state of the art for all the modern medium ...
Wind-turbine blades in laydown yard awaiting installation. The primary application of wind turbines is to generate energy using the wind. Hence, the aerodynamics is a very important aspect of wind turbines. Like most machines, wind turbines come in many different types, all of them based on different energy extraction concepts.
Henrik Stiesdal (born April 14, 1957) is a Danish inventor and businessman in the modern wind power industry. In 1978, he designed one of the first wind turbines representing the so-called "Danish Concept" which dominated the global wind industry through the 1980s. [1]
IEC 61400 is a set of design requirements made to ensure that wind turbines are appropriately engineered against damage from hazards within the planned lifetime. The standard concerns most aspects of the turbine life from site conditions before construction, to turbine components being tested, [ 1 ] assembled and operated.
WindSim was first developed by Vector AS, a consulting firm, as an internal tool used to build the Norwegian Wind Atlas in cooperation with Norwegian Meteorological Institute . WindSim was productized for PC platforms in 2003. The software developer and the software product are both named "WindSim".