When.com Web Search

  1. Ad

    related to: finding an unknown side trigonometry definition examples math

Search results

  1. Results From The WOW.Com Content Network
  2. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 3 – Applications of the law of cosines: unknown side and unknown angle. Given triangle sides b and c and angle γ there are sometimes two solutions for a. The theorem is used in solution of triangles, i.e., to find (see Figure 3): the third side of a triangle if two sides and the angle between them is known: = + ⁡;

  3. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    To find an unknown angle, the law of cosines is safer than the law of sines. The reason is that the value of sine for the angle of the triangle does not uniquely determine this angle. For example, if sin β = 0.5, the angle β can equal either 30° or 150°. Using the law of cosines avoids this problem: within the interval from 0° to 180° the ...

  4. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...

  5. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, ⁡ = ⁡ = ⁡ =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.

  6. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  7. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six ...

  8. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Trigonometry has been noted for its many identities, that is, equations that are true for all possible inputs. [83] Identities involving only angles are known as trigonometric identities. Other equations, known as triangle identities, [84] relate both the sides and angles of a given triangle.

  9. Law (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Law_(mathematics)

    Pythagorean theorem: It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, sometimes called the Pythagorean equation: [6]