Search results
Results From The WOW.Com Content Network
In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies (not mirror images) of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An. Antiprisms are a subclass of prismatoids, and are a (degenerate) type of snub polyhedron.
In geometry, the hexagonal antiprism is the 4th in an infinite set of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. Antiprisms are similar to prisms except the bases are twisted relative to each other, and that the side faces are triangles, rather than quadrilaterals .
The octahedron is a regular polyhedron, and a triangular antiprism. The octahedron is also a rectified tetrahedron. Many polyhedra are repeated from different construction sources, and are colored differently. The Wythoff construction applies equally to uniform polyhedra and uniform tilings on the surface of a sphere, so
A pentagrammic antiprism is made of two regular pentagrams and 10 equilateral triangles. In geometry, a prismatic uniform polyhedron is a uniform polyhedron with dihedral symmetry. They exist in two infinite families, the uniform prisms and the uniform antiprisms. All have their vertices in parallel planes and are therefore prismatoids.
In geometry, an n-gonal trapezohedron, n-trapezohedron, n-antidipyramid, n-antibipyramid, or n-deltohedron [3], [4] is the dual polyhedron of an n-gonal antiprism.The 2n faces of an n-trapezohedron are congruent and symmetrically staggered; they are called twisted kites.
3D model of a (uniform) pentagrammic antiprism. In geometry, the pentagrammic antiprism is one in an infinite set of nonconvex antiprisms formed by triangle sides and two regular star polygon caps, in this case two pentagrams. It has 12 faces, 20 edges and 10 vertices. This polyhedron is identified with the indexed name U 79 as a uniform ...
A crossed square antiprism is a star polyhedron, topologically identical to the square antiprism with the same vertex arrangement, but it can't be made uniform; the sides are isosceles triangles. Its vertex configuration is 3.3/2.3.4, with one triangle retrograde.
Snub polyhedra have Wythoff symbol | p q r and by extension, vertex configuration 3.p.3.q.3.r.Retrosnub polyhedra (a subset of the snub polyhedron, containing the great icosahedron, small retrosnub icosicosidodecahedron, and great retrosnub icosidodecahedron) still have this form of Wythoff symbol, but their vertex configurations are instead (..).