When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    Then for the ellipse case of AC > (B/2) 2, the ellipse is real if the sign of K equals the sign of (A + C) (that is, the sign of each of A and C), imaginary if they have opposite signs, and a degenerate point ellipse if K = 0. In the hyperbola case of AC < (B/2) 2, the hyperbola is degenerate if and only if K = 0.

  3. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  4. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    if B 2 − 4AC < 0, the equation represents an ellipse; if A = C and B = 0, the equation represents a circle, which is a special case of an ellipse; if B 2 − 4AC = 0, the equation represents a parabola; if B 2 − 4AC > 0, the equation represents a hyperbola; if A + C = 0, the equation represents a rectangular hyperbola.

  5. Vertex (curve) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(curve)

    An ellipse (red) and its evolute (blue). The dots are the vertices of the curve, each corresponding to a cusp on the evolute. In the geometry of plane curves, a vertex is a point of where the first derivative of curvature is zero. [1]

  6. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    The eccentricity of an ellipse is strictly less than 1. When circles (which have eccentricity 0) are counted as ellipses, the eccentricity of an ellipse is greater than or equal to 0; if circles are given a special category and are excluded from the category of ellipses, then the eccentricity of an ellipse is strictly greater than 0.

  7. Principal axis theorem - Wikipedia

    en.wikipedia.org/wiki/Principal_axis_theorem

    The equation is for an ellipse, since both eigenvalues are positive. (Otherwise, if one were positive and the other negative, it would be a hyperbola.) The principal axes are the lines spanned by the eigenvectors. The minimum and maximum distances to the origin can be read off the equation in diagonal form.

  8. Four-vertex theorem - Wikipedia

    en.wikipedia.org/wiki/Four-vertex_theorem

    The four-vertex theorem was first proved for convex curves (i.e. curves with strictly positive curvature) in 1909 by Syamadas Mukhopadhyaya. [8] His proof utilizes the fact that a point on the curve is an extremum of the curvature function if and only if the osculating circle at that point has fourth-order contact with the curve; in general the osculating circle has only third-order contact ...

  9. Extreme point - Wikipedia

    en.wikipedia.org/wiki/Extreme_point

    Throughout, it is assumed that is a real or complex vector space.. For any ,,, say that lies between [2] and if and there exists a < < such that = + ().. If is a subset of and , then is called an extreme point [2] of if it does not lie between any two distinct points of .