When.com Web Search

  1. Ad

    related to: equation for ellipse calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  3. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the major axis that connects two points on the ellipse's edge.

  4. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.. An ellipsoid is a quadric surface; that is, a surface that may be defined as the zero set of a polynomial of degree two in three variables.

  5. Eccentric anomaly - Wikipedia

    en.wikipedia.org/wiki/Eccentric_anomaly

    Consider the ellipse with equation given by: + =, where a is the semi-major axis and b is the semi-minor axis. For a point on the ellipse, P = P(x, y), representing the position of an orbiting body in an elliptical orbit, the eccentric anomaly is the angle E in the

  6. Flattening - Wikipedia

    en.wikipedia.org/wiki/Flattening

    Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution respectively. Other terms used are ellipticity , or oblateness . The usual notation for flattening is f {\displaystyle f} and its definition in terms of the semi-axes a {\displaystyle a} and b {\displaystyle b} of ...

  7. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    The eccentricity of an ellipse is strictly less than 1. When circles (which have eccentricity 0) are counted as ellipses, the eccentricity of an ellipse is greater than or equal to 0; if circles are given a special category and are excluded from the category of ellipses, then the eccentricity of an ellipse is strictly greater than 0.

  8. Principal axis theorem - Wikipedia

    en.wikipedia.org/wiki/Principal_axis_theorem

    The equation is for an ellipse, since both eigenvalues are positive. (Otherwise, if one were positive and the other negative, it would be a hyperbola.) The principal axes are the lines spanned by the eigenvectors. The minimum and maximum distances to the origin can be read off the equation in diagonal form.

  9. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    An ellipse (red) and its evolute (blue). The dots are the vertices of the ellipse, at the points of greatest and least curvature. For a semi-circle of radius a in the lower half-plane =. The circle of radius a has a radius of curvature equal to a.