Ad
related to: dimensional data modeling tutorial for beginners
Search results
Results From The WOW.Com Content Network
The process of dimensional modeling builds on a 4-step design method that helps to ensure the usability of the dimensional model and the use of the data warehouse. The basics in the design build on the actual business process which the data warehouse should cover. Therefore, the first step in the model is to describe the business process which ...
In computing, the star schema or star model is the simplest style of data mart schema and is the approach most widely used to develop data warehouses and dimensional data marts. [1] The star schema consists of one or more fact tables referencing any number of dimension tables .
The relationships among the dimensional attributes are expressed by hierarchies. A hierarchy is a directed tree whose nodes are dimensional attributes and whose arcs model many-to-one associations between dimensional attribute pairs. A hierarchy includes a dimension, positioned at the tree's root, and all of the dimensional attributes that ...
The bus matrix purpose is one of high abstraction and visionary planning on the data warehouse architectural level. By dictating coherency in the development and implementation of an overall data warehouse the bus architecture approach enables an overall vision of the broader enterprise integration and consistency while at the same time dividing the problem into more manageable parts [2 ...
The snowflake schema is in the same family as the star schema logical model. In fact, the star schema is considered a special case of the snowflake schema. The snowflake schema provides some advantages over the star schema in certain situations, including: Some OLAP multidimensional database modeling tools are optimized for snowflake schemas. [3]
The dimension is a data set composed of individual, non-overlapping data elements. The primary functions of dimensions are threefold: to provide filtering, grouping and labelling. These functions are often described as "slice and dice". A common data warehouse example involves sales as the measure, with customer and product as dimensions.
Data modeling techniques and methodologies are used to model data in a standard, consistent, predictable manner in order to manage it as a resource. The use of data modeling standards is strongly recommended for all projects requiring a standard means of defining and analyzing data within an organization, e.g., using data modeling:
However, real-world systems are often nonlinear and multidimensional, in some instances rendering explicit equation-based modeling problematic. Empirical models, which infer patterns and associations from the data instead of using hypothesized equations, represent a natural and flexible framework for modeling complex dynamics.