Ad
related to: formula for radius from diameter and height of triangle
Search results
Results From The WOW.Com Content Network
Any line through a triangle that splits both the triangle's area and its perimeter in half goes through the triangle's incenter (the center of its incircle). There are either one, two, or three of these for any given triangle. [15] The incircle radius is no greater than one-ninth the sum of the altitudes. [16]: 289
The radius of the first arc must be chosen large enough to cause all successive arcs to end on the correct side of the next crossing point; however, all sufficiently-large radii work. For two lines, this forms a circle; for three lines on the sides of an equilateral triangle, with the minimum possible radius, it forms a Reuleaux triangle, and ...
Let A′ be the point opposite A on the circle, so that A′A is a diameter, and A′AB is an inscribed triangle on a diameter. By Thales' theorem, this is a right triangle with right angle at B. Let the length of A′B be c n, which we call the complement of s n; thus c n 2 +s n 2 = (2r) 2. Let C bisect the arc from A to B, and let C′ be the ...
The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex; the shortest segment between the base and apex is the height. The area of a triangle equals one-half the product of height and base length.
For a circle, the width is the same as the diameter; a circle of width w has perimeter π w. A Reuleaux triangle of width w consists of three arcs of circles of radius w. Each of these arcs has central angle π /3, so the perimeter of the Reuleaux triangle of width w is equal to half the perimeter of a circle of radius w and therefore is equal ...
shape formula variables circle = where is the radius of the circle and is the diameter.: semicircle (+)where is the radius of the semicircle.: triangle + + where , and are the lengths of the sides of the triangle.
Thus, when the radius is small enough, these sets degenerate to the equilateral triangle itself, but when the radius is as large as possible they equal the corresponding Reuleaux triangle. Every shape with width w, diameter d, and inradius r (the radius of the largest possible circle contained in the shape) obeys the inequality
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.