Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and other F-tests.
The F table serves as a reference guide containing critical F values for the distribution of the F-statistic under the assumption of a true null hypothesis. It is designed to help determine the threshold beyond which the F statistic is expected to exceed a controlled percentage of the time (e.g., 5%) when the null hypothesis is accurate.
C UL = upper limit critical value for one-sided test on a balanced design α = significance level, e.g., 0.05 n = number of data points per data series F c = critical value of Fisher's F ratio; F c can be obtained from tables of the F distribution [10] or using computer software for this function.
The textbook method is to compare the observed value of F with the critical value of F determined from tables. The critical value of F is a function of the degrees of freedom of the numerator and the denominator and the significance level (α). If F ≥ F Critical, the null hypothesis is rejected. The computer method calculates the probability ...
Example: To find 0.69, one would look down the rows to find 0.6 and then across the columns to 0.09 which would yield a probability of 0.25490 for a cumulative from mean table or 0.75490 from a cumulative table. To find a negative value such as -0.83, one could use a cumulative table for negative z-values [3] which yield a probability of 0.20327.
The critical value is the number that the test statistic must exceed to reject the test. In this case, F crit (2,15) = 3.68 at α = 0.05. Since F=9.3 > 3.68, the results are significant at the 5% significance level. One would not accept the null hypothesis, concluding that there is strong evidence that the expected values in the three groups ...
The α-level upper critical value of a probability distribution is the value exceeded with probability , that is, the value such that () =, where is the cumulative distribution function. There are standard notations for the upper critical values of some commonly used distributions in statistics:
The Pareto distribution, or "power law" distribution, used in the analysis of financial data and critical behavior. The Pearson Type III distribution; The phase-type distribution, used in queueing theory; The phased bi-exponential distribution is commonly used in pharmacokinetics; The phased bi-Weibull distribution