Search results
Results From The WOW.Com Content Network
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself).
The common divisors can be found by dividing both numbers by successive integers from 2 to the smaller number b. The number of steps of this approach grows linearly with b, or exponentially in the number of digits. Another inefficient approach is to find the prime factors of one or both numbers.
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
Prime numbers have exactly 2 divisors, and highly composite numbers are in bold. 7 is a divisor of 42 because =, so we can say It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2, 3, −3.
a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.
A number that is not part of any friendly pair is called solitary. The abundancy index of n is the rational number σ(n) / n, in which σ denotes the sum of divisors function. A number n is a friendly number if there exists m ≠ n such that σ(m) / m = σ(n) / n. Abundancy is not the same as abundance, which is defined as σ(n) − 2n.
There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes. An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.
The prime numbers are precisely the atoms of the division lattice, namely those natural numbers divisible only by themselves and 1. [ 2 ] For any square-free number n , its divisors form a Boolean algebra that is a sublattice of the division lattice.