Search results
Results From The WOW.Com Content Network
As this example shows, when like terms exist in an expression, they may be combined by adding or subtracting (whatever the expression indicates) the coefficients, and maintaining the common factor of both terms. Such combination is called combining like terms or collecting like terms, and it is an important tool used for solving equations.
Unlike with functions, notational ambiguities can be overcome by means of additional definitions (e.g., rules of precedence, associativity of the operator). For example, in the programming language C , the operator - for subtraction is left-to-right-associative , which means that a-b-c is defined as (a-b)-c , and the operator = for assignment ...
The same term can also be used more informally to refer to something "standard" or "classic". For example, one might say that Euclid's proof is the "canonical proof" of the infinitude of primes. There are two canonical proofs that are always used to show non-mathematicians what a mathematical proof is like:
For example: "All humans are mortal, and Socrates is a human. ∴ Socrates is mortal." ∵ Abbreviation of "because" or "since". Placed between two assertions, it means that the first one is implied by the second one. For example: "11 is prime ∵ it has no positive integer factors other than itself and one." ∋ 1. Abbreviation of "such that".
This following list features abbreviated names of mathematical functions, function-like operators and other mathematical terminology. This list is limited to abbreviations of two or more letters (excluding number sets). The capitalization of some of these abbreviations is not standardized – different authors might use different capitalizations.
A plane conic passing through the circular points at infinity. For real projective geometry this is much the same as a circle in the usual sense, but for complex projective geometry it is different: for example, circles have underlying topological spaces given by a 2-sphere rather than a 1-sphere. circuit A component of a real algebraic curve.
This is a glossary of algebraic geometry. See also glossary of commutative algebra , glossary of classical algebraic geometry , and glossary of ring theory . For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry .
Visual proof of the Pythagorean identity: for any angle , the point (,) = (, ) lies on the unit circle, which satisfies the equation + =.Thus, + =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...