When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression , which predicts multiple correlated dependent variables rather than a single dependent variable.

  3. R (programming language) - Wikipedia

    en.wikipedia.org/wiki/R_(programming_language)

    R is a programming language for statistical computing and data visualization. It has been adopted in the fields of data mining, bioinformatics and data analysis. [9] The core R language is augmented by a large number of extension packages, containing reusable code, documentation, and sample data. R software is open-source and free software.

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...

  5. Francis Galton - Wikipedia

    en.wikipedia.org/wiki/Francis_Galton

    Galton invented the use of the regression line [59] and for the choice of r (for reversion or regression) to represent the correlation coefficient. [ 47 ] In the 1870s and 1880s he was a pioneer in the use of normal theory to fit histograms and ogives to actual tabulated data, much of which he collected himself: for instance large samples of ...

  6. Stan (software) - Wikipedia

    en.wikipedia.org/wiki/Stan_(software)

    In addition, higher-level interfaces are provided with packages using Stan as backend, primarily in the R language: [4] rstanarm provides a drop-in replacement for frequentist models provided by base R and lme4 using the R formula syntax; brms [5] provides a wide array of linear and nonlinear models using the R formula syntax;

  7. Jamovi - Wikipedia

    en.wikipedia.org/wiki/Jamovi

    jamovi is an open source graphical user interface for the R programming language. [3] It is used in statistical research, especially as a tool for ANOVA (analysis of variance) and to understand statistical inference. [4] [5] It also can be used for linear regression, [6] mixed models and Bayesian models. [7]

  8. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.

  9. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression.The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.