Ad
related to: monomeric proteins examples in the body biology quizlet quiz teststudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In biology, a protein filament is a long chain of protein monomers, such as those found in hair, muscle, or in flagella. [1] Protein filaments form together to make the cytoskeleton of the cell. They are often bundled together to provide support, strength, and rigidity to the cell.
The polymerization of one kind of monomer gives a homopolymer. Many polymers are copolymers, meaning that they are derived from two different monomers. In the case of condensation polymerizations, the ratio of comonomers is usually 1:1. For example, the formation of many nylons requires equal amounts of a dicarboxylic acid and diamine. In the ...
Connexins are commonly named according to their molecular weights, e.g. Cx26 is the connexin protein of 26 kDa. A competing nomenclature is the gap junction protein system, where connexins are sorted by their α (GJA) and β (GJB) forms, with additional connexins grouped into the C, D and E groupings, followed by an identifying number, e.g. GJA1 corresponds to Cx43.
For example, while biology refers to macromolecules as the four large molecules comprising living things, in chemistry, the term may refer to aggregates of two or more molecules held together by intermolecular forces rather than covalent bonds but which do not readily dissociate.
This can be done in terms of the chemical elements present, or by molecular structure e.g., water, protein, fats (or lipids), hydroxyapatite (in bones), carbohydrates (such as glycogen and glucose) and DNA. In terms of tissue type, the body may be analyzed into water, fat, connective tissue, muscle, bone, etc.
Examples of these include cytidine (C), uridine (U), adenosine (A), guanosine (G), and thymidine (T). Nucleosides can be phosphorylated by specific kinases in the cell, producing nucleotides. Both DNA and RNA are polymers, consisting of long, linear molecules assembled by polymerase enzymes from repeating structural units, or monomers, of ...
Protein dynamics and conformational changes allow proteins to function as nanoscale biological machines within cells, often in the form of multi-protein complexes. [14] Examples include motor proteins, such as myosin, which is responsible for muscle contraction, kinesin, which moves cargo inside cells away from the nucleus along microtubules ...
[5] [6] In addition to tetrameric forms of α 2-macroglobulin, dimeric, and more recently monomeric αM protease inhibitors have been identified. [7] [8] Each monomer of human α 2-macroglobulin is composed of several functional domains, including macroglobulin domains, a thiol ester-containing domain and a receptor-binding domain. [9]