Search results
Results From The WOW.Com Content Network
The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP:
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
A small phone book as a hash table. In computer science, a hash table is a data structure that implements an associative array, also called a dictionary or simply map; an associative array is an abstract data type that maps keys to values. [3]
It is also possible to delete a key from an association list, by scanning the list to find each occurrence of the key and splicing the nodes containing the key out of the list. [1] The scan should continue to the end of the list, even when the key is found, in case the same key may have been inserted multiple times.
The member function erase can be used to delete an element from a collection, but for containers which are based on an array, such as vector, all elements after the deleted element have to be moved forward to avoid "gaps" in the collection. Calling erase multiple times on the same container generates much overhead from moving the elements.
Here's how the process of deleting a word from the dictionary works and why it happens in the first place. Ever tried reading the whole dictionary? Here's how long it would take you.
While tries commonly store character strings, they can be adapted to work with any ordered sequence of elements, such as permutations of digits or shapes. A notable variant is the bitwise trie, which uses individual bits from fixed-length binary data (such as integers or memory addresses) as keys.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.