Search results
Results From The WOW.Com Content Network
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
We conclude, based on our review of the articles in this special issue and the broader literature, that it is time to stop using the term "statistically significant" entirely. Nor should variants such as "significantly different," " p ≤ 0.05 {\displaystyle p\leq 0.05} ," and "nonsignificant" survive, whether expressed in words, by asterisks ...
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...
Statistical significance test: A predecessor to the statistical hypothesis test (see the Origins section). An experimental result was said to be statistically significant if a sample was sufficiently inconsistent with the (null) hypothesis. This was variously considered common sense, a pragmatic heuristic for identifying meaningful experimental ...
A result is said to be statistically significant if it allows us to reject the null hypothesis. All other things being equal, smaller p-values are taken as stronger evidence against the null hypothesis. Loosely speaking, rejection of the null hypothesis implies that there is sufficient evidence against it.
Lehr's [3] [4] (rough) rule of thumb says that the sample size (for each group) for the common case of a two-sided two-sample t-test with power 80% (=) and significance level = should be: , where is an estimate of the population variance and = the to-be-detected difference in the mean values of both samples.
Fisher's exact test (also Fisher-Irwin test) is a statistical significance test used in the analysis of contingency tables. [1] [2] [3] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes.
In statistics, the sample maximum and sample minimum, also called the largest observation and smallest observation, are the values of the greatest and least elements of a sample. [1] They are basic summary statistics , used in descriptive statistics such as the five-number summary and Bowley's seven-figure summary and the associated box plot .