When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Therefore, to prove that Fermat's equation has no solutions for n > 2, it suffices to prove that it has no solutions for n = 4 and for all odd primes p. For any such odd exponent p, every positive-integer solution of the equation a p + b p = c p corresponds to a general integer solution to the equation a p + b p + c p = 0.

  3. Overdetermined system - Wikipedia

    en.wikipedia.org/wiki/Overdetermined_system

    This case yields no solution. Example: x = 1, x = 2. M > N but only K equations (K < M and K ≤ N+1) are linearly independent. There exist three possible sub-cases of this: K = N+1. This case yields no solutions. Example: 2x = 2, x = 1, x = 2. K = N. This case yields either a single solution or no solution, the latter occurring when the ...

  4. Beal conjecture - Wikipedia

    en.wikipedia.org/wiki/Beal_conjecture

    The equation + = has no solutions in positive integers and pairwise coprime integers A, B, C if x, y, z > 2. The conjecture was formulated in 1993 by Andrew Beal , a banker and amateur mathematician , while investigating generalizations of Fermat's Last Theorem .

  5. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    Therefore, the solution = is extraneous and not valid, and the original equation has no solution. For this specific example, it could be recognized that (for the value x = − 2 {\displaystyle x=-2} ), the operation of multiplying by ( x − 2 ) ( x + 2 ) {\displaystyle (x-2)(x+2)} would be a multiplication by zero.

  6. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    When we allow the exponent n to be the reciprocal of an integer, i.e. n = 1/m for some integer m, we have the inverse Fermat equation a 1/m + b 1/m = c 1/m. All solutions of this equation were computed by Hendrik Lenstra in 1992. [169] In the case in which the mth roots are required to be real and positive, all solutions are given by [170]

  7. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.

  8. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    In general, a system with fewer equations than unknowns has infinitely many solutions, but it may have no solution. Such a system is known as an underdetermined system. In general, a system with the same number of equations and unknowns has a single unique solution. In general, a system with more equations than unknowns has no solution.

  9. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]