When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    For hypersurfaces in higher-dimensional Euclidean spaces, the principal curvatures may be defined in a directly analogous fashion. The principal curvatures are the eigenvalues of the matrix of the second fundamental form (,) in an orthonormal basis of the tangent space. The principal directions are the corresponding eigenvectors.

  3. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The two principal curvatures at p are the maximum and minimum possible values of the curvature of this plane curve at p, as the plane under consideration rotates around the normal line. The following summarizes the calculation of the above quantities relative to a Monge patch f(u, v) = (u, v, h(u, v)).

  4. Euler's theorem (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem...

    The theorem establishes the existence of principal curvatures and associated principal directions which give the directions in which the surface curves the most and the least. The theorem is named for Leonhard Euler who proved the theorem in . More precisely, let M be a surface in three-dimensional Euclidean space, and p a point on M.

  5. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    The Gaussian curvature is the product of the two principal curvatures Κ = κ 1 κ 2. The sign of the Gaussian curvature can be used to characterise the surface. If both principal curvatures are of the same sign: κ 1 κ 2 > 0, then the Gaussian curvature is positive and the surface is said to have an elliptic point. At such points, the surface ...

  6. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    An example of negatively curved space is hyperbolic geometry (see also: non-positive curvature). A space or space-time with zero curvature is called flat. For example, Euclidean space is an example of a flat space, and Minkowski space is an example of a flat spacetime. There are other examples of flat geometries in both settings, though.

  7. Second fundamental form - Wikipedia

    en.wikipedia.org/wiki/Second_fundamental_form

    For general Riemannian manifolds one has to add the curvature of ambient space; if N is a manifold embedded in a Riemannian manifold (M,g) then the curvature tensor R N of N with induced metric can be expressed using the second fundamental form and R M, the curvature tensor of M:

  8. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    In 1760 Euler proved a theorem expressing the curvature of a space curve on a surface in terms of the principal curvatures, known as Euler's theorem. Later in the 1700s, the new French school led by Gaspard Monge began to make contributions to differential geometry.

  9. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    Gently bending a slice must then roughly maintain this curvature (assuming the bend is roughly a local isometry). If one bends a slice horizontally along a radius, non-zero principal curvatures are created along the bend, dictating that the other principal curvature at these points must be zero. This creates rigidity in the direction ...