Search results
Results From The WOW.Com Content Network
In many articles on laser physics, which do not use the amplification coefficient defined above, the gain is called Amplification coefficient, in analogy with Absorption coefficient, which is actually not a coefficient at all; one has to multiply it to the length of propagation (thickness), change the signum, take inverse of the exponential ...
The Gaussian function has a 1/e 2 diameter (2w as used in the text) about 1.7 times the FWHM.. At a position z along the beam (measured from the focus), the spot size parameter w is given by a hyperbolic relation: [1] = + (), where [1] = is called the Rayleigh range as further discussed below, and is the refractive index of the medium.
6) defines the beam diameter as the distance between diametrically opposed points in that cross-section of a beam where the power per unit area is 1/e (0.368) times that of the peak power per unit area. This is the beam diameter definition that is used for computing the maximum permissible exposure to a laser beam.
Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy. Spectral flux: Φ e,ν [nb 3] watt per hertz: W/Hz: M⋅L 2 ⋅T −2: Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅nm −1. Φ e,λ [nb 4] watt ...
Relative intensity noise (RIN), describes the instability in the power level of a laser. The noise term is important to describe lasers used in fiber-optic communication and LIDAR remote sensing . Relative intensity noise can be generated from cavity vibration, fluctuations in the laser gain medium or simply from transferred intensity noise ...
An example is laser surgery. [6] Power-in-the-bucket and Strehl ratio are two other attempts to define beam quality. Both these methods use a laser beam profiler to measure how much power is delivered to a given area. There is also no simple conversion between M 2, power-in-the-bucket, and Strehl ratio.
An optical power meter (OPM) is a device used to measure the power in an optical signal. The term usually refers to a device for testing average power in fiber optic systems. Other general purpose light power measuring devices are usually called radiometers , photometers , laser power meters (can be photodiode sensors or thermopile laser ...
Since there are many types of lasers—ultraviolet, visible, infrared, continuous wave, pulsed, high-power, low-power—there is an assortment of instrumentation for measuring laser beam profiles. No single laser beam profiler can handle every power level, pulse duration, repetition rate, wavelength , and beam size.