When.com Web Search

  1. Ads

    related to: why do we need ml in science activities pdf worksheet 1 4

Search results

  1. Results From The WOW.Com Content Network
  2. Active learning (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Active_learning_(machine...

    [1] [2] [3] In statistics literature, it is sometimes also called optimal experimental design. [4] The information source is also called teacher or oracle. There are situations in which unlabeled data is abundant but manual labeling is expensive. In such a scenario, learning algorithms can actively query the user/teacher for labels.

  3. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  5. Computational learning theory - Wikipedia

    en.wikipedia.org/wiki/Computational_learning_theory

    In computer science, computational learning theory (or just learning theory) is a subfield of artificial intelligence devoted to studying the design and analysis of machine learning algorithms. [ 1 ] Overview

  6. Machine learning in earth sciences - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_in_earth...

    Applications of machine learning (ML) in earth sciences include geological mapping, gas leakage detection and geological feature identification.Machine learning is a subdiscipline of artificial intelligence aimed at developing programs that are able to classify, cluster, identify, and analyze vast and complex data sets without the need for explicit programming to do so. [1]

  7. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Although they do not need to be labeled, high-quality datasets for unsupervised learning can also be difficult and costly to produce. [2] [3] [4] Many organizations, including governments, publish and share their datasets. The datasets are classified, based on the licenses, as Open data and Non-Open data.

  8. ML (programming language) - Wikipedia

    en.wikipedia.org/wiki/ML_(programming_language)

    ML (Meta Language) is a general-purpose, high-level, functional programming language.It is known for its use of the polymorphic Hindley–Milner type system, which automatically assigns the data types of most expressions without requiring explicit type annotations (type inference), and ensures type safety; there is a formal proof that a well-typed ML program does not cause runtime type errors. [1]

  9. Rule-based machine learning - Wikipedia

    en.wikipedia.org/wiki/Rule-based_machine_learning

    Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. [ 1 ] [ 2 ] [ 3 ] The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that ...