When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    The function f(x) = √ x defined on [0, 1] is not Lipschitz continuous. This function becomes infinitely steep as x approaches 0 since its derivative becomes infinite. However, it is uniformly continuous, [8] and both Hölder continuous of class C 0, α for α ≤ 1/2 and also absolutely continuous on [0, 1] (both of which imply the former).

  3. Modulus of continuity - Wikipedia

    en.wikipedia.org/wiki/Modulus_of_continuity

    In general, the modulus of continuity of a uniformly continuous function on a metric space needs to take the value +∞. For instance, the function f : N → R such that f(n) := n 2 is uniformly continuous with respect to the discrete metric on N, and its minimal modulus of continuity is ω f (t) = +∞ for any t≥1, and ω f (t) = 0 otherwise ...

  4. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A function f with variable x is continuous at the real number c, if the limit of (), as x tends to c, is equal to (). There are several different definitions of the (global) continuity of a function, which depend on the nature of its domain .

  5. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    Part I of the theorem then says: if f is any Lebesgue integrable function on [a, b] and x 0 is a number in [a, b] such that f is continuous at x 0, then = is differentiable for x = x 0 with F′(x 0) = f(x 0). We can relax the conditions on f still further and suppose that it is merely locally integrable.

  6. Closed graph theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem

    Theorem [7] [8] — A linear map between two F-spaces (e.g. Banach spaces) is continuous if and only if its graph is closed. The theorem is a consequence of the open mapping theorem ; see § Relation to the open mapping theorem below (conversely, the open mapping theorem in turn can be deduced from the closed graph theorem).

  7. Tietze extension theorem - Wikipedia

    en.wikipedia.org/wiki/Tietze_extension_theorem

    Pavel Urysohn. In topology, the Tietze extension theorem (also known as the Tietze–Urysohn–Brouwer extension theorem or Urysohn-Brouwer lemma [1]) states that any real-valued, continuous function on a closed subset of a normal topological space can be extended to the entire space, preserving boundedness if necessary.

  8. Closed graph theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem...

    The usual proof of the closed graph theorem employs the open mapping theorem.It simply uses a general recipe of obtaining the closed graph theorem from the open mapping theorem; see closed graph theorem § Relation to the open mapping theorem (this deduction is formal and does not use linearity; the linearity is needed to appeal to the open mapping theorem which relies on the linearity.)

  9. Absolute continuity - Wikipedia

    en.wikipedia.org/wiki/Absolute_continuity

    More generally, the measure μ is assumed to be locally finite (rather than finite) and F(x) is defined as μ((0,x]) for x > 0, 0 for x = 0, and −μ((x,0]) for x < 0. In this case μ is the Lebesgue–Stieltjes measure generated by F. [17] The relation between the two notions of absolute continuity still holds. [18]