Search results
Results From The WOW.Com Content Network
Developmental bioelectricity is a sub-discipline of biology, related to, but distinct from, neurophysiology and bioelectromagnetics. Developmental bioelectricity refers to the endogenous ion fluxes, transmembrane and transepithelial voltage gradients, and electric currents and fields produced and sustained in living cells and tissues.
Bioelectromagnetics, also known as bioelectromagnetism, is the study of the interaction between electromagnetic fields and biological entities. Areas of study include electromagnetic fields produced by living cells, tissues or organisms, the effects of man-made sources of electromagnetic fields like mobile phones, and the application of electromagnetic radiation toward therapies for the ...
Static stability: minimum distance from the center of mass (COM) to any edge of the support polygon created by the legs in stance for each moment in time. [13] A walking animal is statically stable if there are enough legs to form the support polygon (i.e. 3 or more) and the COM is within the support polygon.
Static electricity is an imbalance of electric charges within or on the surface of a material. The charge remains until it can move away by an electric current or electrical discharge . The word "static" is used to differentiate it from current electricity , where an electric charge flows through an electrical conductor .
The vegetal pole contains large yolky cells that divide very slowly, in contrast with the animal pole above it. In some cases, the vegetal pole is thought to differentiate into the extraembryonic membranes that protect and nourish the developing embryo, such as the placenta in mammals and the chorion in birds.
In developmental biology, animal embryonic development, also known as animal embryogenesis, is the developmental stage of an animal embryo. Embryonic development starts with the fertilization of an egg cell (ovum) by a sperm cell (spermatozoon). [1] Once fertilized, the ovum becomes a single diploid cell known as a zygote.
The motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation. By definition, the electric potential at the reference point is zero units. Typically, the reference point is earth or a point at infinity, although any point can be used.
The definition of electrostatic potential, combined with the differential form of Gauss's law (above), provides a relationship between the potential Φ and the charge density ρ: =. This relationship is a form of Poisson's equation. [11]