Search results
Results From The WOW.Com Content Network
In the merge sort algorithm, this subroutine is typically used to merge two sub-arrays A[lo..mid], A[mid+1..hi] of a single array A. This can be done by copying the sub-arrays into a temporary array, then applying the merge algorithm above. [1] The allocation of a temporary array can be avoided, but at the expense of speed and programming ease.
Merge sort parallelizes well due to the use of the divide-and-conquer method. Several different parallel variants of the algorithm have been developed over the years. Some parallel merge sort algorithms are strongly related to the sequential top-down merge algorithm while others have a different general structure and use the K-way merge method.
The k-way merge problem consists of merging k sorted arrays to produce a single sorted array with the same elements.Denote by n the total number of elements. n is equal to the size of the output array and the sum of the sizes of the k input arrays.
One implementation can be described as arranging the data sequence in a two-dimensional array and then sorting the columns of the array using insertion sort. The worst-case time complexity of Shellsort is an open problem and depends on the gap sequence used, with known complexities ranging from O ( n 2 ) to O ( n 4/3 ) and Θ( n log 2 n ).
Merge-insertion sort also performs fewer comparisons than the sorting numbers, which count the comparisons made by binary insertion sort or merge sort in the worst case. The sorting numbers fluctuate between n log 2 n − 0.915 n {\displaystyle n\log _{2}n-0.915n} and n log 2 n − n {\displaystyle n\log _{2}n-n} , with the same leading ...
Block sort, or block merge sort, is a sorting algorithm combining at least two merge operations with an insertion sort to arrive at O(n log n) (see Big O notation) in-place stable sorting time. It gets its name from the observation that merging two sorted lists, A and B , is equivalent to breaking A into evenly sized blocks , inserting each A ...
The previous example is a two-pass sort: first sort, then merge. The sort ends with a single k-way merge, rather than a series of two-way merge passes as in a typical in-memory merge sort. This is because each merge pass reads and writes every value from and to disk, so reducing the number of passes more than compensates for the additional cost ...
Bitonic mergesort is a parallel algorithm for sorting. It is also used as a construction method for building a sorting network.The algorithm was devised by Ken Batcher.The resulting sorting networks consist of ( ()) comparators and have a delay of ( ()), where is the number of items to be sorted. [1]