When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Geodesics on an ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid

    the inverse geodesic problem or second geodesic problem, given A and B, determine s 12, α 1, and α 2. As can be seen from Fig. 1, these problems involve solving the triangle NAB given one angle, α 1 for the direct problem and λ 12 = λ 2 − λ 1 for the inverse problem, and its two adjacent sides.

  3. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    As noted above, the iterative solution to the inverse problem fails to converge or converges slowly for nearly antipodal points. An example of slow convergence is (Φ 1, L 1) = (0°, 0°) and (Φ 2, L 2) = (0.5°, 179.5°) for the WGS84 ellipsoid. This requires about 130 iterations to give a result accurate to 1 mm. Depending on how the inverse ...

  4. Earth section paths - Wikipedia

    en.wikipedia.org/wiki/Earth_section_paths

    The inverse problem for earth sections is: given two points, and on the surface of the reference ellipsoid, find the length, , of the short arc of a spheroid section from to and also find the departure and arrival azimuths (angle from true north) of that curve, and . The figure to the right illustrates the notation used here.

  5. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration , their motion satisfying the geodesic equations.

  6. Geographical distance - Wikipedia

    en.wikipedia.org/wiki/Geographical_distance

    Finding the geodesic between two points on the Earth, the so-called inverse geodetic problem, was the focus of many mathematicians and geodesists over the course of the 18th and 19th centuries with major contributions by Clairaut, [5] Legendre, [6] Bessel, [7] and Helmert English translation of Astron. Nachr. 4, 241–254 (1825). Errata. [8]

  7. Geodesy - Wikipedia

    en.wikipedia.org/wiki/Geodesy

    The solutions to both problems in plane geometry reduce to simple trigonometry and are valid for small areas on Earth's surface; on a sphere, solutions become significantly more complex as, for example, in the inverse problem, the azimuths differ going between the two end points along the arc of the connecting great circle.

  8. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    There are either one or two solutions. Case 4: two angles and an included side given (ASA). The four-part cotangent formulae for sets (cBaC) and (BaCb) give c and b, then A follows from the sine rule. Case 5: two angles and an opposite side given (AAS). The sine rule gives b and then we have Case 7 (rotated). There are either one or two solutions.

  9. Inverse problem - Wikipedia

    en.wikipedia.org/wiki/Inverse_problem

    An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, source reconstruction in acoustics, or calculating the density of the Earth from measurements of its gravity field.