Search results
Results From The WOW.Com Content Network
In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. [1] Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy ...
The stub is made capacitive or inductive according to whether the main line presents an inductive or capacitive impedance, respectively. This is not the same as the actual impedance of the load since the reactive part of the load impedance will be subject to impedance transformer action and the resistive part.
[2] [3] It is customary to use the symbol for inductance, in honour of the physicist Heinrich Lenz. [4] [5] In the SI system, the unit of inductance is the henry (H), which is the amount of inductance that causes a voltage of one volt, when the current is changing at a rate of one ampere per second. [6]
The total reactance at the angular frequency therefore is given by the geometric (complex) addition of a capacitive reactance (Capacitance) = and an inductive reactance : =. To calculate the impedance Z {\displaystyle \scriptstyle Z} the resistance has to be added geometrically and then Z {\displaystyle Z} is given by
As the main Miller theorem, besides helping circuit analysis process, the dual version is a powerful tool for designing and understanding circuits based on modifying impedance by additional current. Typical applications are some exotic circuits with negative impedance as load cancellers, [ 6 ] capacitance neutralizers, [ 7 ] Howland current ...
Unintentional inductive coupling can cause signals from one circuit to be induced into a nearby circuit, this is called cross-talk, and is a form of electromagnetic interference. k is the coupling coefficient , Le1 and Le2 is the leakage inductance , M1 (M2) is the mutual inductance
The units of specific contact resistivity are typically therefore in ohm-square metre, or Ω⋅m 2. When the current is a linear function of the voltage, the device is said to have ohmic contacts . Inductive and capacitive methods could be used in principle to measure an intrinsic impedance without the complication of contact resistance.
The red dot e 1 shows a conduction electron in the sheet right after it has undergone a collision with an atom, and e 2 shows the same electron after it has been accelerated by the magnetic field. On average at e 1 the electron has the same velocity as the sheet (v, black arrow) in the +x direction.